3.4.73 \(\int \frac {\sec ^5(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [373]

Optimal. Leaf size=123 \[ \frac {4 i \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}-\frac {2 i \sec ^3(c+d x)}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i \sec (c+d x)}{a^2 d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

4*I*arctanh(1/2*sec(d*x+c)*a^(1/2)*2^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*2^(1/2)/a^(5/2)/d-4*I*sec(d*x+c)/a^2/d/(a
+I*a*tan(d*x+c))^(1/2)-2/3*I*sec(d*x+c)^3/a/d/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {3572, 3570, 212} \begin {gather*} \frac {4 i \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}-\frac {4 i \sec (c+d x)}{a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sec ^3(c+d x)}{3 a d (a+i a \tan (c+d x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^5/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((4*I)*Sqrt[2]*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(a^(5/2)*d) - (((2*I)/3)*
Sec[c + d*x]^3)/(a*d*(a + I*a*Tan[c + d*x])^(3/2)) - ((4*I)*Sec[c + d*x])/(a^2*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3570

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(a/(b*f)), Subst[
Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^
2, 0]

Rule 3572

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2
*(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m - 2))), x] + Dist[2*(d^2/a), Int[(d*Sec[e + f*
x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2
+ n, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {\sec ^5(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx &=-\frac {2 i \sec ^3(c+d x)}{3 a d (a+i a \tan (c+d x))^{3/2}}+\frac {2 \int \frac {\sec ^3(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx}{a}\\ &=-\frac {2 i \sec ^3(c+d x)}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i \sec (c+d x)}{a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {4 \int \frac {\sec (c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx}{a^2}\\ &=-\frac {2 i \sec ^3(c+d x)}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i \sec (c+d x)}{a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {(8 i) \text {Subst}\left (\int \frac {1}{2-a x^2} \, dx,x,\frac {\sec (c+d x)}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^2 d}\\ &=\frac {4 i \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}-\frac {2 i \sec ^3(c+d x)}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i \sec (c+d x)}{a^2 d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.97, size = 82, normalized size = 0.67 \begin {gather*} -\frac {2 \sec (c+d x) \left (7 i-6 i \sqrt {1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt {1+e^{2 i (c+d x)}}\right )+\tan (c+d x)\right )}{3 a^2 d \sqrt {a+i a \tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^5/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(-2*Sec[c + d*x]*(7*I - (6*I)*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]] + Tan[c + d
*x]))/(3*a^2*d*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 280 vs. \(2 (102 ) = 204\).
time = 0.85, size = 281, normalized size = 2.28

method result size
default \(\frac {2 \left (3 \cos \left (d x +c \right ) \sqrt {2}\, \sin \left (d x +c \right ) \arctan \left (\frac {\left (i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )\right ) \sqrt {2}}{2 \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}}+3 \sqrt {2}\, \arctan \left (\frac {\left (i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )\right ) \sqrt {2}}{2 \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )+8 i \left (\cos ^{2}\left (d x +c \right )\right )-7 i \cos \left (d x +c \right )+8 \sin \left (d x +c \right ) \cos \left (d x +c \right )-i-\sin \left (d x +c \right )\right ) \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{3 d \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right ) \cos \left (d x +c \right ) a^{3}}\) \(281\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^5/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d*(3*cos(d*x+c)*2^(1/2)*sin(d*x+c)*arctan(1/2*(I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)+3*2^(1/2)*arctan(1/2*(I*cos(d*x+c)-I+sin(d*x+c))
/sin(d*x+c)/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)+8*I*
cos(d*x+c)^2-7*I*cos(d*x+c)+8*sin(d*x+c)*cos(d*x+c)-I-sin(d*x+c))*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/
2)/(I*sin(d*x+c)+cos(d*x+c)-1)/cos(d*x+c)/a^3

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1074 vs. \(2 (96) = 192\).
time = 0.64, size = 1074, normalized size = 8.73 \begin {gather*} \frac {4 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} {\left ({\left (-3 i \, \sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) + 3 \, \sqrt {2} \sin \left (2 \, d x + 2 \, c\right ) - 4 i \, \sqrt {2}\right )} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - {\left (3 \, \sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) + 3 i \, \sqrt {2} \sin \left (2 \, d x + 2 \, c\right ) + 4 \, \sqrt {2}\right )} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )} \sqrt {a} - 3 \, {\left (2 \, {\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right )^{2} + \sqrt {2} \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) + \sqrt {2}\right )} \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ), {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + 1\right ) - 2 \, {\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right )^{2} + \sqrt {2} \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) + \sqrt {2}\right )} \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ), {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - 1\right ) - {\left (i \, \sqrt {2} \cos \left (2 \, d x + 2 \, c\right )^{2} + i \, \sqrt {2} \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 i \, \sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) + i \, \sqrt {2}\right )} \log \left (\sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} + \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} + 2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + 1\right ) - {\left (-i \, \sqrt {2} \cos \left (2 \, d x + 2 \, c\right )^{2} - i \, \sqrt {2} \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 i \, \sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) - i \, \sqrt {2}\right )} \log \left (\sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} + \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} - 2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + 1\right )\right )} \sqrt {a}}{3 \, {\left (a^{3} \cos \left (2 \, d x + 2 \, c\right )^{2} + a^{3} \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, a^{3} \cos \left (2 \, d x + 2 \, c\right ) + a^{3}\right )} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/3*(4*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((-3*I*sqrt(2)*cos(2*d*x + 2*c
) + 3*sqrt(2)*sin(2*d*x + 2*c) - 4*I*sqrt(2))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - (3*sq
rt(2)*cos(2*d*x + 2*c) + 3*I*sqrt(2)*sin(2*d*x + 2*c) + 4*sqrt(2))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c) + 1)))*sqrt(a) - 3*(2*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x +
 2*c) + sqrt(2))*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) - 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(
2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2
 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2
 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))
 - 1) - (I*sqrt(2)*cos(2*d*x + 2*c)^2 + I*sqrt(2)*sin(2*d*x + 2*c)^2 + 2*I*sqrt(2)*cos(2*d*x + 2*c) + I*sqrt(2
))*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*sin(1/2*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) - (-I*sqrt(2)*cos(2*d*x + 2*c)^2
 - I*sqrt(2)*sin(2*d*x + 2*c)^2 - 2*I*sqrt(2)*cos(2*d*x + 2*c) - I*sqrt(2))*log(sqrt(cos(2*d*x + 2*c)^2 + sin(
2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sqrt(cos
(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1))^2 - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1))*sqrt(a))/((a^3*cos(2*d*x + 2*c)^2 + a^3*sin(2*d*x + 2*c)^2 + 2*a^3*c
os(2*d*x + 2*c) + a^3)*d)

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 270 vs. \(2 (96) = 192\).
time = 0.40, size = 270, normalized size = 2.20 \begin {gather*} -\frac {2 \, {\left (3 \, \sqrt {2} {\left (i \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a^{3} d\right )} \sqrt {\frac {1}{a^{5} d^{2}}} \log \left (-\frac {16 \, {\left ({\left (i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{5} d^{2}}} - i\right )} e^{\left (-i \, d x - i \, c\right )}}{a^{2} d}\right ) + 3 \, \sqrt {2} {\left (-i \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a^{3} d\right )} \sqrt {\frac {1}{a^{5} d^{2}}} \log \left (-\frac {16 \, {\left ({\left (-i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{5} d^{2}}} - i\right )} e^{\left (-i \, d x - i \, c\right )}}{a^{2} d}\right ) + 2 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (3 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 4 i\right )}\right )}}{3 \, {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-2/3*(3*sqrt(2)*(I*a^3*d*e^(2*I*d*x + 2*I*c) + I*a^3*d)*sqrt(1/(a^5*d^2))*log(-16*((I*a^2*d*e^(2*I*d*x + 2*I*c
) + I*a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^5*d^2)) - I)*e^(-I*d*x - I*c)/(a^2*d)) + 3*sqrt(2)*(-
I*a^3*d*e^(2*I*d*x + 2*I*c) - I*a^3*d)*sqrt(1/(a^5*d^2))*log(-16*((-I*a^2*d*e^(2*I*d*x + 2*I*c) - I*a^2*d)*sqr
t(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^5*d^2)) - I)*e^(-I*d*x - I*c)/(a^2*d)) + 2*sqrt(2)*sqrt(a/(e^(2*I*d*x
 + 2*I*c) + 1))*(3*I*e^(2*I*d*x + 2*I*c) + 4*I))/(a^3*d*e^(2*I*d*x + 2*I*c) + a^3*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{5}{\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**5/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral(sec(c + d*x)**5/(I*a*(tan(c + d*x) - I))**(5/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^5/(I*a*tan(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^5\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^5*(a + a*tan(c + d*x)*1i)^(5/2)),x)

[Out]

int(1/(cos(c + d*x)^5*(a + a*tan(c + d*x)*1i)^(5/2)), x)

________________________________________________________________________________________